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Field 

The Ising model on a checkerboard lattice with crossing and four-spin interac- 
tions is solved exactly when there is pure imaginary magnetic field 
H=i(~/2)kT. The model exhibits a critical point with continuously varying 
exponents. 
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1. I N T R O D U C T I O N  

The two-dimensional Ising model in a nonzero magnetic field is a well- 
known unsolved problem in statistical physics. In 1952 Lee and Yang (~) 
obtained a solution for the two-dimensional nearest-neighbor model in the 
pure imaginary magnetic field 

H = i�89 T (1) 

where T is the temperature. This solution, which has since been rederived 
from a variety of different approaches, (2~) exhibits a second-order phase 
transition occuring at infinite temperature. This leads to the occurrence of a 
zero-temperature phase transition in a fully frustrated Ising model (5'7) in 
the dual space. It is also known that this solution of the nearest-neighbor 
model yields information on monomer correlations in the dimer problem. 2 

In this paper we show that the phase transition occuring in the two- 
dimensional Ising model at the pure imaginary field (1) behaves differently 
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when there are crossing and/or multispin interactions. We consider, and 
exactly solve, an Ising model with nearest-neighbor, next-nearest-neighbor, 
and four-spin interactions on a checkerboard-type lattice and in the 
presence of the magnetic field (1).(8) Our analysis shows that the model 
exhibits a phase transition occuring at finite temperatures. Furthermore, 
the critical exponents are continuous varying, i.e., they are dependent on 
the interactions. It is a curious fact that this Ising model, while unsolvable 
in zero magnetic field, becomes solvable in the presence of the pure 
imaginary field (1). 

2. DUALITY T R A N S F O R M A T I O N  

Consider an Ising model of N spins arranged on the square lattice as 
shown in Fig. 1. The four spins al ,  a2, a3, and 0~ surrounding each shaded 
square in Fig. 1 interact with an energy 

E(001, a2, 003, 0"4) = - -  J l ( ~  02  "~- 00304)  - -  J 2 ( a 2 0 3  -~- 0040"1) 

- -  J001 003 - J ' ~  004 - -  J4001 02  0"3 004 (2) 

as indicated in Fig. 2. In addition, there is an external magnetic field H 
which we shall set at the fixed value (1). 

Fig. 1. The checkerboard  Ising lattice. 
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Fig. 2. 

-dt 

-Jt 
Is ing in teract ions  (2) con ta ined  in a shaded  square  in Fig. 1. The  four-spin  interac- 

t ion is no t  shown.  

Since the thermodynamics of a system with complex Bolzmann factors 
may be boundary-condition-dependent, it is important to specify the 
precise boundary condition used. For  our purposes we assume periodic 
boundary conditions. Write L = H/kT and denote the partition function by 
Z N ( L ) ,  where L in general can be complex. Then, by using the identity 

e in~r/2 = irr (3) 

the partition function of the Ising model can be written, at L = ire~2, as 

where 

re) = iN ~ 1--[ 9(O1, 0"2, 0"3, 0"4) (4) 
Z N i -~ o- i = + 1 shaded 

squares 

B (0 .1 ,  0"2, 0"3' 0"4)= 0"10-2 exp[-E(0"1 ,  0"2, 0"3, 0-4) /kT]  ( 5 )  

is the Boltzmann factor associated with a shaded square in Fig. 1. The 
factor i N can be dropped if we assume N to be multiples of 4.3 

Next we transform the partition function (4) into that of an Ising 
model with interactions in every square. This is a duality transformation 
wich can be effected in a number of different ways. (9-tl) Here we follow a 
formulation due to Burkhardt, (1~ which also permits a discussion of the 
spin correlation function, by placing the N/2 dual spins #t in the unshaded 
squares (cf. Fig. 1). It is then straightforward by following the procedure 

3 It can  be qui te  easily verified tha t  ZN(in/2) is identically zero for N =  odd. 

822/44/3-4-12 
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given in Ref. 10 to rewrite {he partition function (4) in the form of a spin 
summation in the dual space: 

ZN "~ 2 H W ( ~ l ,  # 2 ,  # 3 ,  # 4 )  ( 6 )  
#l = --+ 1 all 

squares 

where 

with 

W(/'~ 1 ' ]~2 ' /~3 ' ]'~4) = 1 2 (--1)tlff12+t2(x23+t3q34+14~41 
0"10-20-30- 4 

• B(0.1, 0.2, 0.3,  0.4) (7) 

ti = 1(1 + lUi) 

a o. = 1 - 3 k , ( 0 . i ,  0.j) 

is the new "Boltzmann" weight for the dual Ising lattice. Note that this 
transformation is exact, and that the dual lattice has only N / 2  spins and is 
oriented at a 45 ~ rotation (cf. Fig. 1), also with periodic boundary con- 
ditions. It should also be noted that, when applied to the nearest-neighbor 
model, the duality transformation (7) corresponds to the decimation of half 
of the spins in the (fully frustrated) Ising model in the dual space, a 
procedure known to lead to an eight-vertex model at the decoupling 
point. (12) 

For Boltzmann weights B(0.1, 0.2, 0.3, 0-4) such as those given by (5) 
satisfying the spin-reversal symmetry, the weights W(#I,/12, #3, kt4) are 
also spin-reversal invariant. We can then write (7) explicitly as 

W = XB (8) 

where W and B are column vectors whose components are 4 

W I =  W(+ + + +) ,  B I = B ( + + + + )  

W2= W(-- + -  +) ,  B 2 = B ( - + - - +  ) 

W3= W(----  + +) ,  B 3 = B ( - - + +  ) 

W4= W(+ - - -  +) ,  B 4 = B ( + - - - +  ) 

Ws= W ( - - - - -  +) ,  B s = B ( - - + - - -  ) 

W6 i-- m(--  --~- - - ), B 6 = B ( - - - - +  ) 

W7 = W ( + - - - ) ,  B 7 = B ( +  - - - )  

W s = W  ( + - - ) ,  B s = B ( - - - - + - -  ) 
4 Note the reversal roles of Ws, W 6 and Bs, B 6 with respect to spin arguments. 

(9) 
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(lO) 

Here + ( - )  denotes  + 1 ( - 1 ) .  I t  can be easily verified that  the inverse of 
(8) is 

B = 2 _ X W  ( 1 1  ) 

3. E Q U I V A L E N C E  W I T H  AN E I G H T - V E R T E X  M O D E L  

For  weights W which are invar iant  under  spin reversals #~ ~ - /~ t ,  it is 
possible to in t roduce a (2 1) m a p p i n g  of the spin configurat ions into the 
ar row configurat ions of an eight-vertex model.  (13'14) This leads to the 
following exact equivalence: 

ZN--~Z8v (12) 

where Z8~ is the par t i t ion function of an eight-vertex model  in the dual  
space whose vertex weights are 

cot= W~, i =  1, 2 ..... 8 (13) 

Here,  we have adop ted  the usual convent ion  in number ing  the vertices in 
effecting the mapping .  (15'16) 

I t  is now a simple ma t t e r  to substi tute (2) and (5) into (8), obta ining 
the following explicit expressions for the vertex weights: s 

{cox, c o 2 , . . . , c o s } : { a + , a - , b + , b  , c + , c  , d + , d _ }  (14) 
where 

a = a+ = a _  = (uvt)  l(sinh x + uZv 2 sinh y)  

b = b  + = b  = ( u v t )  l ( s i n h x - u 2 v  2s inh  y )  

c +_ = ( u v t ) - l [ c o s h  x + u2v 2 cosh y T- t2(u 2 + v2)] 

d+_ = ( u v t ) - l [ c o s h x - u 2 v Z c o s h  y T - t Z ( u 2 - v 2 ) ]  (15) 

5 If we have started with a checkerboard lattice with two different horizontal (and vertical) 
nearest-neighbor interactions J1, J'l (and J2, J2), then the resulting eight-vertex model has 
a+ g:a_, b+ ~ b , which has not been solved. 
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with 

x = 2(K1 + K2), y = 2(K1 - K2) 

H ~  e K, 1)~_c-K', t=e--K4 

K, = J J k  T, X = J/k  T, K' = J ' /k  T 

Since the vertices with weights 0)5 and 0)6, and those with weights 0) 7 and 
0)8, occur in pairs in the eight-vertex model, we may replace both c+ by c 
and d_+ by d where 

c 2 = c + c  , d 2 = d + d _  (16) 

It follows that the partition function (4) is precisely that of an eight-vertex 
model with standard weights a, b, c, d given by (15) and (16). 

Baxter (17) has solved the eight-vertex model for real a, b, c, d. Thus, the 
partition function (4) can be evaluated in the regime c+ c > 0, d+ d > 0, 
or, equivalently, 

Icosh x _+ U2V 2 sinh y[ ~> t21U 2 ~- /)2] (17) 

As is well known, the solution exhibits a transition with continously 
varying exponents, occuring at the critical point 

la1-4-Ib1-4-Icl + [dl = 2 m a x { l a ] ,  Ibl, ]el, Idl} (18) 

4. F E R R O M A G N E T I C  M O D E L  

The above results are very general, applicable to ferromagnetic as well 
as antiferromagnetic interactions. For concreteness we now restrict our- 
selves to ferromagnetic interactions. It can be verified that for 
ferromagnetic interactions the vertex weights (16) are always positive and 
that the only possible realization of (18) is 

[c[ = a + b +  [d[ (19) 

which, after some reduction, reduces to 

] c o s h y - t 4 c o s h x [ = s i n h x [ ( u  4- t4) (v  4_t4)]1/2 (20) 

Here, without loss of generality, we have taken K1 ~> K2 >~ 0. Thus, the Ising 
model (2) is exactly solved at the fixed magnetic field (1) in the 
ferromagnetic regime. For pairwise interactions (K4=0)  for which the 
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Lee-Yang circle theorem (1) is valid, the critical condition (20) reduces 
further to 

coth 2K1 + coth 2/s = 2 [- (e 4K - 1 )(e 4K' - 1 ) ] 1/2 (21 ) 

We see that (21) yields a critical temperature T~ which is finite only when 
there are crossing interactions (JJ' r  The critical temperature diverges 
when there is no crossing interaction (JJ'= 0) and in the one-dimensional 
limit .11 = J 2  ~-- O. 

5. CORRELATION FUNCTION 

We can apply the duality transformation (7) to the two-spin 
correlation function (ao,oa . , . ) ,  where oi,i is the spin located at the point 
(i, j )  in Fig. 1, to obtain an expression in the dual space. Writing 

(22) 

and associating the factors (G,~a~+l,~+l) to the appropriate shaded 
squares, we find 

( ao ,  oan,n > -- Z(~)/Z - -  8v / 8v (23) 

where Zsv=Z(iz/2) is the partition function of the eight-vertex model 
whose vertex weights are given by (15), and Z(8~ ) is the partition function of 
the same eight-vertex model with vertex weights along a single row of n 
sites modified to new values. These new weights are obtained from (7) with 
the replacement 

B (o -1 ,  0-2, 0-3, 0-4) --4. 0-10- 3 B(o -1 ,  0-2, 0-3, 0-4) (24) 

Inspection of (9) shows that this corresponds to negating B3, B4, By, and 
B 8 which, by virtue of (7), leads to the interchanges 

Wl ,--, W4, W2 +--, W3, Ws'--' Ws, W6+-* W7 (25) 

This further corresponds to the negation of the second-neighbor interac- 
tions in the spin representation (in the dual space) of the weightsJ 13'14) 

Barber and Baxter ~ have obtained the magnetization of the eight- 
vertex model considered in the spin language of the dual space, and it is of 
interest to understand their result in the context of the Ising model under 
consideration. This is done by applying the inverse transformation (!1) to 
the spin correlation function (kt0,0#~.n). Again, writing 

/~ooo/Z..n= (#o,o#l,~) '"(Pn ~,n l/~n,.) (26) 
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and associating the (#~,~#~+~.~+~) factors to the corresponding shaded 
squares in effecing the transformation, we obtain 

(#o,o#, , , , , )=Z~'( i ; ) /ZN(i;)  (27) 

where ZN(ig/2 ) is the partition function given by (4), and Z(~)(irc/2) is that 
of the same lattice but with signs of /s  K, K' reversed in a row of n/2 
adjacent shaded squares. This also corresponds to the interchange of the 
Boltzmann weights 

B 1 ~ B3,  B 2 ~-~ B4,  B 5 ~ B7,  B 6 ~ B 8 ( 2 8 )  

for these n shaded squares. Barber and Baxter's evaluation of the 
magnetization indicates that the expression (27) vanishes identically above 
Tc in the n ~ oe limit. 

6. L E E - Y A N G  Z E R O S  

The Lee Yang zeros are solutions of the equation 

Z N ( L  ) = 0 (29)  

in the complex z = e 2L plane, which, for ferromagnets, lie on the unit 
circle. In the limit of N ~  0% the zeros attain a continuous distribution 
described by a density function g(O), where 0 is the azimuth angle of z. Lee 
and Yang (1) have shown that 4rcg(0) is precisely the amount  of discon- 
tinuity of the magnetization 

1 
0 lim ~lnZN(L ) I(L) = -~ N ~ ov (30) 

across the unit circle for 0 fixed. Thus, the existence of a nonzero 
magnetization (and two-spin correlation function in the limit of an infinite 
separation) at 0 = r~ necessarily implies g(rc)> 0, as is found to be the case 
in the one-dimensional and the two-dimensional nearest-neighbor 
models. (1'2) In both of these cases, we have Tc=  or. The situation is less 
clear when there are second-neighbor interactions, since Tc is now finite. 
Certainly we must have g ( rc )>0  below To. For  T >  Tc it is tempting to 
suppose that a gap will occur in the distribution of zeros across the 
negative axis, as is in the case at the positive real axis/1) However, we 
know there is certainly one zero residing at 0 = g for N odd. While we can- 
not rule out the possibility that the zeros may actually possess a vanishing 
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density along an arc of the unit circle crossing the negative real axis, it 
appears more  likely that  the zeros are distributed cont inuously  at all tem- 
peratures in the negative real half-plane. The function g(Tr) will then exhibit 
some sort of singularity at To, perhaps vanishing above T , .  I t  would be 
useful to carry out  numerical  studies for large lattices to elucidate this 
point. 

8. S U M M A R Y  

We have obtained the exact solution of an Ising model  with first-, 
second-, and four-spin interactions in the pure imaginary magnetic  field 
i�89 The solution exhibits a phase transit ion only when there are nonzero  
crossing and/or  four-spin interactions, and the transit ion possesses con- 
t inuously varying exponents.  We also obtained an expression in the dual 
space for the spin-spin correlat ion function and discussed possible forms of 
the Lee -Yang  zero distr ibution across the negative axis. 
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